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Abstract

Geometrical complexity considered in the present study is characterized by a large degree of freedom in placement of

constituents in a composite system. The constituent sizes are not negligibly small compared to the system�s expanse, so
approximations of their configurations and placement patterns by some simple equivalents are not feasible. Numerical

analysis is a means to estimate heat transfer performance of the system, but a strategy is required to navigate through a

vast number of possible constituent patterns to find ones that produce higher heat transfer performance. In the pro-

posed methodology the constituent pattern is captured as a two-dimensional mosaic image of solid cells embedded in a

substrate. On an image assumed as a starter, the singular-value decomposition (SVD) analysis is performed to find its

(SVD) building block elements. By shuffling the building block elements variants of the starter image are created. Heat

transfer analysis is performed on sample systems that are picked up from the ensemble of variants. Using the Taguchi

method and through a genetic algorithm-type reasoning, those element arrangements that do not significantly affect the

heat transfer performance are weeded out. The methodology is demonstrated on the cases of heat conduction through

composite slabs.

� 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Singular-value decomposition analysis; Composite materials; Heat conduction; Optimization; Search algorithms;

Geometric complexity
1. Introduction

The subject of the present study is heat transfer in

geometrically complex systems. The �geometric com-

plexity� implies a wide range of length scales involved in

the system�s organization and the absence or disruption

of regularity in placement of structural components

within the system. Where irregularities have much finer

scales than the system�s dimension, they can be charac-

terized by certain statistical measures. Then, the effects

of such microscopic irregularities or aberrations on heat

transfer are captured in terms of the statistical measures.

For example, heat conduction through composite
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materials has been studied by a number of investigators

in the past, and the equations based on the concept of

ensemble averaging are now developed [1]. In actual

analysis, microscopic fibrous or granular inclusions in

composite material are modeled by particles of well-

defined configuration (rod or sphere). Further, in order

to make the analysis tractable, their spatial placement is

often projected first onto a regular pattern, then, devi-

ations from the base positions are assumed using a dis-

tribution function. Such an approach starting from a

homogenous model works better, as the inclusions be-

come minuscule and more populous.

In another recent development to deal with geomet-

rically complex systems, the first step is the assumption

of a simple elementary geometry, then, the element

configuration is multiplied changing the size of offspring

configurations in a stepwise fashion [2–4]. Geometric
ghts reserved.
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Nomenclature

A geometric parameter for placement of Xi- or

xi-elements

B geometric parameter for placement of Yj- or
yj-elements

I unity matrix

K number of eigenvalues

k0 thermal conductivity of open cell

k1 thermal conductivity of solid cell

ke;i equivalent thermal conductivity (non-di-

mensional), i being x or y
Li slab length, i being x or y
m maximum number of rows in S

n maximum number of columns in S

Qi heat flow rate through a slab having a cross-

sectional area Lj � 1; subscript i indicating
the direction of heat flow (x or y), and j (to
Lj) the direction normal to that of i (y or x)

S matrix of a component placement pattern

ST transpose of S

SZ effect of parameter Z on heat transfer per-

formance, Z being any of geometric pa-

rameters (A–B2)

T non-dimensional temperature (to the scale

of DT )
DT temperature difference between the opposite

faces of the slab

U matrix composed of left-singular vectors

uðkÞ kth left-singular column vector

ui;k ði; kÞ element of U

V matrix composed of right-singular vectors

VT transpose of V

vðkÞ kth right-singular column vector

Xi row element group

x co-ordinate axis set on the slab

xi building block row element of U

Yj column element group

y co-ordinate set on the slab

yj building block row element of V

Greek symbols

kðkÞ kth eigenvalue

qZ contribution of parameter Z to heat transfer

performance, Z being any of geometric pa-

rameters (A–B2)

R matrix composed of rðkÞ and 0

rðkÞ square root of kðkÞ

Subscripts

x x-direction
y y-direction
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patterns thus created are trees [2,4] and mosaics [3]

embedded in a matrix. While these patterns studied in

[2–4] are regular patterns having multiple length scales,

they are the special cases of fractal geometry.

In general, the fractal geometry allows us to find a

certain regularity (self-similarity) in a random geometric

topography. Applications of the fractal geometry to the

analysis of complex heat transfer systems are envisioned

in [5]. The fractal analysis helps to reveal geometric

features that cannot be captured by classical statistical

analysis, but it still needs a large body of geometric data

to make the revealed self-similarity statistically mean-

ingful. In other words, when applied in the analysis of

heat transfer in composite systems, the constituents

(discrete media in a matrix or structural components) of

the system must be present in large number in the sys-

tem�s expanse.
The above quick overview of the existing methodol-

ogies is presented in order to highlight a geometric fea-

ture of complex heat transfer systems considered in the

present study. That is, the constituents of the composite

system are neither microscopic compared to the system�s
dimensions nor exist in a large number in the spatial

expanse of interest. Instead, their sizes typically range
from about one-tenth to several-tenths of the system�s
dimension. Where the constituents are discrete media or

structural components, their population in the space of

interest is utmost one hundred. As such, the geometric

data contained in an individual system is small, barring

the application of statistical or fractal analysis to char-

acterization of the geometric features. Meanwhile, the

placement of constituents has a wide range of possibil-

ity, so that the entire ensemble of possible system or-

ganizations is huge. Although heat transfer in each

system organization can be analyzed using an available

means, most commonly a numerical simulation code, it

is impractical to visit all points in the ensemble by re-

peated applications of a deterministic method.

Examples of complex systems of the present category

are abundant. Typical ones are found in electronic

equipment where components of various sizes are packed

in a system box. Also, electronic components such as

wiring substrates have internal organizations that are

categorized as complex systems of the present kind. In-

deed, geometric complexity is looming as one of the

major challenges to designers of electronic equipment

[6]. Today, computational fluid dynamics (CFD) codes

are the popular means of thermal design of electronic
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Fig. 1. Patterns having an equal number (48) of solid cells.

(a) Regular pattern, (b) arbitrarily created pattern.
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equipment. While the CFD code produces detailed so-

lutions of thermal field, its repeated usage for an entire

ensemble of design options is time consuming and de-

mands large human and computer resources. Due to

geometric complexity of the system�s internal organiza-
tion the productivity of CFD-based design is currently

very low. Improvement of designer�s productivity is an

industry-wide agenda, and the development of a meth-

odology to expedite the analytical work is urgently

needed [7].
In a methodology proposed by the present author

there are a few key steps [7]. For the purpose of illus-

tration we consider an ensemble of systems where the

system�s outer dimension is fixed and the components of

specified sizes can be placed arbitrarily in the system

space. In the first step, we choose a sample design of

component placement and perform heat transfer analy-

sis on the sample. Then, create a certain number of

variants from the first sample, and perform heat transfer

analyses on that set. From the solution body thus de-

veloped we deduce the sensitivity of temperature distri-

bution to the component placement pattern. Knowledge

about such sensitivity is then incorporated in a simple

code that is designed to expedite the analysis. For ex-

ample, when the component placement pattern in one

corner of the system is found not to affect the temper-

ature of a component of primary interest in another

corner, components in the former corner are treated in

an expeditious code as a lump without regard to their

specific arrangement. The entire process that culminates

in the production of an expeditious code is named

�Build-up approach (BUA)� to symbolize the develop-

ment of a knowledge super-layer (expeditious code) on

the base of detailed solutions [7]. A full account of the

BUA is beyond the scope of the present paper. The

above reference to BUA is only to explain the immediate

motivation of the present study.
One of the key steps in BUA is the assumption of a

set of variants from a sample geometric system. The

variants are called here template models. We need a

tool to create a set of template models in an organized

manner. Such a tool must capture the level of geometric

complexity in terms of some quantitative measures.

Quantitative analysis of geometric configurations gives

us the following practical benefits. It allows us to create

a template set where all geometric patterns are at an

equal level of complexity. Constituents of the system

can be repositioned without affecting the complexity

level, and the effects of constituent relocation on the

temperature field can be studied. In such a search for

better or optimum constituent location, we can use the

existing optimization algorithms once we have a means

to change the geometric configuration in an organized

manner. We can also create models having different

levels of complexity, and compare their heat transfer

performance. If we find little difference in heat transfer
performance between two models, we will choose a

simpler model and create its variants for further ex-

ploration of the heat transfer versus the geometry, so

save time and computational resources. This is tanta-

mount to quantitative organization of geometric mod-

eling.

Within a reasonable writing space it is difficult to

cover the whole spectrum of issues involved in quanti-

tative analysis and modeling of geometric configura-

tions. The present paper has an objective of describing

only the basics of the proposed methodology. First, it

explains the geometric analysis using simple examples

that have two-dimensional mosaic patterns of different

materials in the slab. Second, it illustrates how the re-

sults of geometric analysis can be used to examine the

sensitivity of heat transfer performance to the constitu-

ent placement in the slab. Also, the search for better

constituent placements is discussed.
2. Singular-value decomposition analysis

Fig. 1 is an illustration that will be used to explain the

geometric data analysis. The patterns in Fig. 1 represent

the arrangements of high thermal conductivity material

(solid cells) and low conductivity material (open cells)

comprising a two-dimensional slab. The patterns of Fig.

1(a) and (b) have an equal number of solid (hence, open)

cells. The number of solid cells is 48. Obviously, the

pattern of Fig. 1(a) has a much higher level of regularity

(lower level of complexity) than that of Fig. 1(b). How

can we represent the difference in the two configura-

tions?

The method of our choice is the singular-value

decomposition (SVD) of pattern [8]. We view the pattern

as a matrix (S) of binary digits, representing the solid
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cell by �1� and the open cell by �0�. Then, the matrix is

decomposed into the left-singular matrix U and the

right-singular matrix V.

S ¼ URVT; ð1Þ

where

R ¼

rð1Þ 0 � � � 0

0 rð2Þ � � � �
� � � � � �
� � � � � 0
0 � � � 0 rðKÞ

2
66664

3
77775
; ð2Þ

rðkÞ ¼
ffiffiffiffiffiffiffi
kðkÞ

p
, and kðkÞ is the kth eigenvalue determined

from

detðSST � kIÞ ¼ 0 for U; ð3Þ

detðSTS� kIÞ ¼ 0 for V: ð4Þ

VT in Eq. (1) is the transpose of V, and ST in Eqs. (3)

and (4) is the transpose of S. Eqs. (3) and (4) produce the

same unique set of eigenvalues. The eigenvalues are set

in decreasing order: kð1Þ P kð2Þ P � � � P kðKÞ P 0, where

K is the number of eigenvalues. Using the eigenvalues we

determine the column singular-vectors of U from

SSTuðkÞ ¼ kðkÞuðkÞ 16 k6K ð5Þ
and the normalizing condition
6
0
0
0
0

0.3874   0.1
0.4845   0.5
-0.6377  0.3
-0.0889  0.1
-0.4479  0.1

-
-
-

U =

Σ =

VT =

x

y

Fig. 2. A starter pattern and its matrixes ðU;VÞ o
Xm
i¼1

u2ik ¼ 1; ð6Þ

where uik is the ith element of the kth column vector.

Likewise, we find the right-singular matrix V.

The number of eigenvalues (that is K, also the rank of

SST and STS) reflects the complexity of a geometric

pattern. The pattern of Fig. 3(a) has one eigenvalue, that

is 48 (r ¼ 6:9282), a single U column vector composed

of 0 and 0.2887, and also a single V column vector

composed of 0 and 0.5. The pattern of Fig. 1(b) has 10

eigenvalues, the maximum being 21.67 and the minimum

0.307, a 15� 10 U matrix, and a 10� 10 V matrix.

Fig. 2 shows another example, where the number

of eigenvalues is five, the maximum eigenvalue be-

ing 39.291 and the minimum 0.5516. The number of

solid cells is again 48. Fig. 2 includes the full list

of matrix elements. Examination of U and VT reveals

that U is composed of six distinct row elements, and

VT is likewise made of six column elements. Among

six row or column elements one has only zero ele-

ments. An example of non-zero row elements in U is

½ 0:3467 0:5357 0:2835 0:0849 0:0726 	 that ap-

pears on the top and the tenth row. An example from VT

is ½ 0:1106 0:5635 0:3402 0:1278 0:1955 	T that ap-

pears on the second and the third column. These row

and column elements, and the eigenvalues or their

square roots, are the building blocks of the matrix S.
0.3467   0.5357   0.2835    0.0849   0.0726
0.2496  -0.3119   0.2579  -0.0406   0.1493
0.2496  -0.3119   0.2579  -0.0406   0.1493
0            0            0             0            0
0.2362   0.0743  -0.4051  -0.3850   0.3554
0.3281  -0.1277  -0.4454   0.8049   0.1729
0.2362   0.0743  -0.4051  -0.3850   0.3554
0            0            0             0            0
0.2496  -0.3119   0.2579  -0.0406   0.1493
0.3467   0.5357   0.2835   0.0849    0.0726
0.2496  -0.3119   0.2579  -0.0406   0.1493
0            0            0             0            0
0.3114  -0.0570  -0.1247  -0.1076  -0.4538
0.3114  -0.0570  -0.1247  -0.1076  -0.4538 
0.3114  -0.0570  -0.1247  -0.1076  -0.4538

- -
- -

- -
- -

- -
0            0            0             0            0

- -

-0.3119   0.2579  -
0            0            0             0            0

- - - -
- - - -
- - - -

.2683    0             0           0            0 
            1.9013     0           0            0
             0           1.6667    0            0
             0             0          1.3282    0
             0             0           0           0.7427

106   0.1106   0.5467    0     0    0.5467    0.0524 0.0524   0.4713
635   0.5635  -0.1716    0     0   -0.1716  -0.0671  -0.0671  -0.2498
402   0.3402  -0.0188    0     0  -0.0188  -0.2672  -0.2672    0.4674
278   0.1278  -0.2112    0     0  -0.2112   0.6060    0.6060   0.3685
955   0.1955   0.3559     0     0   0.3559   0.2327  0.2327  -0.6010

-0.1716    0     0   - - -0.0671  -
-0.0188    0     0  -0.0188  - -
-0.2112    0     0  -

0.2327  -

f singular vectors and eigenvalue matrix (R).



Table 1

Eigenvalues and building block elements of the starter pattern

of Fig. 2

Eigenvalues

kð1Þ ¼ 3.9291E01

kð2Þ ¼ 3.6151E00

kð3Þ ¼ 2.7779E00

kð4Þ ¼ 1.7642E00

kð5Þ ¼ 5.5164E)01

Building blocks for U

x0: 0, 0, 0, 0, 0
x1: 0.34674, 0.53566, 0.28349, 0.08488, 0.07260
x2: 0.24963, )0.31186, 0.25787, )0.04061, 0.14926
x3: 0.23624, 0.07433, )0.40513, )0.38502, 0.35538
x4: 0.32814, )0.12767, )0.44537, 0.80486, 0.17285
x5: 0.31144, )0.05704, )0.12472, )0.10757, )0.45383

Building blocks for V

y0: 0, 0, 0, 0, 0
y1: 0.38741, 0.48450, )0.63707, )0.08895, )0.44793
y2: 0.11063, 0.56346, 0.34018, 0.12781, 0.19550
y3: 0.54671, )0.17159, )0.01878, )0.21123, 0.35594
y4: 0.05235, )0.06715, )0.26722, 0.60596, 0.23272
y5: 0.47134, )0.24977, 0.46736, 0.36852, )0.60101

x

y

Lx

Ly

open cell:  thermal conductivity k0

solid cell:  thermal conductivity k1

Fig. 3. A slab composed of low (open cell) and high (solid cell)

conductivity materials.

W. Nakayama / International Journal of Heat and Mass Transfer 46 (2003) 3397–3409 3401
Table 1 summarizes the building block elements for a

pattern of Fig. 2, where the symbols for the building

blocks xi (06 i6 5) and yj (06 j6 5) are defined.

Now we can create variants from the pattern of Fig. 2

by relocating xi�s and yj�s in U and V keeping R intact.

All these patterns are �geometrically equivalent�; they

have the same R matrix and made of the same building

blocks. But, the number of variants is astronomical as

readily estimated from permutations of xi�s and yj�s. For
example, the building blocks to fill 15 slots of U are

3� x0, 2� x1, 4� x2, 2� x3, 1� x4, 3� x5, so the

number of permutations amounts to 378,378,000. When

multiplied by the number from V, the total number of

possible configurations becomes 8.5816� 1013!! Obvi-

ously, we need to introduce some means to reduce the

computational burden. But, before proceeding to tackle

this issue, we formulate a heat conduction problem in

the next section.
3. Heat conduction in slabs

Fig. 3 shows one of the patterns generated by re-

locating the building blocks of the pattern of Fig. 2.

The slab has an outer dimension Lx � Ly , and we as-

sume a unit depth normal to the paper. The open cell

(square) has a thermal conductivity k0 and the solid

cell (also, square) has k1 We consider steady heat

conduction problems where the boundary temperatures

are specified uniformly on either the vertical sides

(x ¼ 0 and Lx) or the horizontal sides (y ¼ 0 and Ly).

The remaining sides are adiabatic, so the primary heat
flow is in the x-direction, or in the y-direction. Taking
the boundary temperature difference as a temperature

scale and Ly as a length scale, we non-dimensionalize

the heat conduction equation. In the non-dimensional

equation the ratio (k1=k0) is a sole property parameter.

The non-dimensional equation is solved numerically

dividing the zone into 30� 20 meshes (staggered for

temperature nodes and heat flow nodes). The meshes

are considered fine enough for the present purpose,

and the convergence of solution is judged by a crite-

rion that the heat flows on the boundaries are bal-

anced within 0.1% of error. The formulation of finite

difference equations and the numerical solution scheme

are standard ones, so they need not be reproduced

here.

The result of our interest is the equivalent thermal

conductivity: it is defined in terms of the dimensional

quantities (on the right-hand side) as

ke;i 

QiLi

k0 DT Lj � 1
ð7Þ

where Q is the heat flow rate, DT is the temperature

difference between the opposing boundaries of the slab,

the suffix i denotes the direction of the primary heat flow

(x or y) and j is the direction orthogonal to the direction

specified by i (y or x), and 1 in the denominator means

unit slab thickness. Note that the nominal heat flux is

Qi=ðLj � 1Þ. The �equivalent thermal conductivity� here
does not mean homogenizing the slab�s internal orga-

nization; it is used merely as a measure of heat transfer

performance that is affected by the placement of solid

cells.
4. Overall plan of analysis

A strategic plan is required to navigate through a

vast variant ensemble to explore the relationship
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between the heat transfer performance and the solid

cell placement. There are an array of methods that

have been applied to heat transfer problems involving

many parameters and uncertainties; the information

measure theory [9], the genetic algorithms (GAs) [10–

12], the surrogate model [13], the Monte Carlo, the

descriptive, and the gradient methods [14]. The power

of each method depends on the nature of problem and

the objective of analysis. In many cases the combina-

tion of different methods works with a higher efficiency

in terms of the time to reach a solution than a single

method. There is in fact no universally applicable

specific guide about which method or what combina-

tion of methods could have the highest efficiency in

solution search. Much depends on the hunch of the

strategy planner. So, the plan described below does not

claim any universality, but grew from the need to ac-

quaint possible users of the methods with the basic

concepts of solution search.

Fig. 4 describes the steps comprising the present

scheme. The objective here is to find a better placement

of solid (highly conductive) cells that produces a higher

equivalent thermal conductivity. In the pattern analysis

phase we start with the SVD analysis of a sample pat-

tern, then, find the eigenvalues and the building block

elements described in Section 2. In the planning phase

some of the building blocks are grouped. By grouping,

permutations of building block elements are allowed

only within the group boundaries. The grouping can be

done referring to constraints on component placements
Singular value decomposition (SVD) a

Eigenvalues and building blocks

The first-stage screening by T

Grouping of building blocks

Definition of geometric parame

Choice of levels in the geo

Evolutionary search or genetic algorithm (GA) 

Pattern Analysis

Planning

Pattern Creations

Fig. 4. Steps in hierarchical search for optimu
in actual systems. For example, in electronic equipment,

some components need to be held close together as a

group.

Although this grouping significantly reduces the

template population, the number of possible templates is

likely to remain prohibitive. We then employ the

Taguchi method [15] for the first stage screening. The

objective of the first stage screening is to grasp a coarse

but global picture about the sensitivity of heat transfer

performance to the element permutations. We denote

the element permutations by symbols, and call the

symbols the geometric parameters. The geometric pa-

rameters serve as the factors, and the states of the pa-

rameters as the levels in the Taguchi method. The next

section provides some more details of this step.

Manipulation of the geometric parameters creates a

set of patterns, and heat transfer analysis is performed

on the created patterns. On the body of heat transfer

solutions we apply the Taguchi method, find the sensi-

tivity of heat transfer performance to the parameters,

and weed out unimportant parameters from the scope of

further studies. The template population becomes sig-

nificantly small after the first stage screening, but it is

still too large for heat transfer analyses to be performed

on all models included in the template set. In the present

study, fine-tuning of optimization is done by an evolu-

tionary search. The process may be categorized as a GA

search. The GA is suitable to work with the present

parameter types. As will be shown in the following

section the geometric parameters can be manipulated by
nalysis of a start pattern

 of eigenvectors

aguchi method

ters

metric parameters

search for optimum patterns

Heat Transfer Analysis

m placements of highly conductive cells.
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permutation, mutation, and cross-over, namely, the

basic operations of GA search.

Although search engines based on the Taguchi

method or the GA are commercially available, we resort

to hand-on search in the next section. That is, we choose

to work on the system of a moderate size and make the

search process transparent to those who are not familiar

with these search algorithms. One of the important is-

sues in the application of search algorithms is whether

the search is trapped in local maximum or minimum

before finding a true optimum point. This issue is not

included in the following study, as its inclusion duly

complicates the search process. For more discussion on

the present search scheme, see Appendix A.
5. Study on an example ensemble

Our starting point is the pattern of Fig. 2. The

building block elements are already listed in Table 1.

The building block elements are grouped as shown in

Table 2; group X1 is composed of one x1 element and

two x2 elements, X2 has one x0, one x1, and two x2
elements, and so on. This grouping is made only to

illustrate the process. Arrangements of the groups and

the elements within the group are treated as the states

of the geometric parameters as shown in Table 2. Pa-
Table 2

Grouping of building block elements, geometric parameter symbols,

Grouping of xi’s and yj’s
X1: x1, 2� x2
X2: x0, x1, 2� x2
X3: x0, 2� x3, x4
X4: x0, 3� x5
Y1: y0, y1, 2� y2, y3
Y2: y0, y3, 2� y4, y5

Geometric parameters

A: Arrangement of blocks ðX1;X2;X3;X4Þ
B: Arrangement of blocks ðY1; Y2Þ
A1: Arrangement of ðx1; 2� x2Þ in X1

A2: Arrangement of ðx0; x1; 2� x2Þ in X2

A3: Arrangement of ðx0; 2� x3; x4Þ in X3

B1: Arrangement of ðy0; y1; 2� y2; y3Þ in Y1
B2: Arrangement of ðy0; y3; 2� y4; y5Þ in Y2

Definition of levels

Parameter Level 1

A X1X3X2X4

B Y1 Y2
A1 x1 x2 x2
A2 x0 x2 x1 x2
A3 x0 x3 x4 x3
(X4 is fixed as x0x5x5x5)
B1 y1 y2 y2 y3 y0
B2 y0 y3 y4 y4 y5
rameter A is for the arrangement of Xi�s (i ¼ 1–4), each

arrangement in permutation is a state of A. Parameter

B has only two states, ðY1; Y2Þ and ðY2; Y1Þ. Parameter

A1 specifies the arrangement of elements in X1; it has

3!/2!¼ 3 states, that is, three ways of permutation for one

x1 and two x2 in three slots. A2 has 4!/2!¼ 12 states, A3

has 12 states, and so on. The internal organization of

X4 is fixed as ðx0 x5 x5 x5Þ. The total number of states of

the geometric parameters, that is the total template

population, is obtained from the product of states of

A, B, A1 to A3, B1 and B2. The template population

thus computed is significantly reduced from the order

of 1013 (Section 2), but still of the order of 106.

In applying the Taguchi method for the first stage

screening we pick up two states, or levels in the ter-

minology of the Taguchi method, from the geometric

parameters. We set the levels as shown in Table 2.

Then, we run the heat conduction solver for eight cases

over which two levels (denoted by 1 and 2) of the

parameters are distributed as shown in Table 3. Note

that each column in the table has four 1s and four 2s.

Moreover, to four 1s on any column, there correspond

two 1s and two 2s on other columns. The same can be

observed for four 2s on any column. So, when the

results from runs 1–4 are averaged, the average con-

tains contributions from two levels of the parameters

except A whose level is set at 1. The average from runs
and specifications of levels for the first-stage screening

Level 2

X1 X4X2X3

Y2 Y1
x2 x1 x2
x2 x0 x2 x1
x0 x3 x3 x4

y2 y1 y3 y2 y0
y4 y0 y3 y5 y4



Table 3

Plan of numerical analysis runs: Levels of A–B2 are specified by 1 and 2

Run no. A B A1 A2 A3 B1 B2

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2
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5–8 contains contributions from two levels of the pa-

rameters except A whose level is set this time at 2.

Hence, the difference between the average from runs 1–

4 and that from 5–8 tells how influential A is. Likewise,

the influences of other parameters on the heat transfer

performance can be estimated by comparing two av-

erages from runs for 1s and 2s on the column. By

substituting )1 for 1 and 1 for 2 in Table 3 we note

that any pair of columns satisfies the orthogonality

condition, that is, the sum of element pairs on two

columns is zero.

Table 4 summarizes the results of numerical analysis

in terms of the equivalent thermal conductivity ke;x and
A A A B A1 A2 A3 B1 B2

SA ¼ ððaverage Dke;x for run 1–4Þ � ðaverage Dke;x for run 5–8ÞÞ2

8� 1
4


 �2 ; ð10Þ
ke;y for the cases of k1=k0 ¼ 100, 10, and 2. The equiva-

lent thermal conductivity in the x-direction, ke;x is higher
than that in the y-direction, ke;y , for all three cases of

k1=k0. This reflects the effects of element grouping that

tends to leave strips of solid cells elongated in the x-di-
rection. However, the difference between ke;x and ke;y
diminishes as k1=k0 decreases, because the thermal re-

sistance by the open cells come to predominate. Using

these results we estimate the contributions from A–B2 to

the heat transfer performance of the slab as follows. We

use the results of ke;x for k1=k0 ¼ 100 as an example.
Table 4

Computed equivalent thermal conductivity values

Run no. k1=k0 ¼ 100 k1=k0 ¼ 10

ke;x ke;y ke;x

1 3.142 2.807 2.197

2 3.142 2.306 2.204

3 3.094 2.055 2.193

4 3.490 2.522 2.309

5 3.147 2.413 2.191

6 3.283 2.413 2.234

7 3.325 2.117 2.266

8 3.028 2.165 2.160
(1) Compute the column average,

ke;x ¼
1

8

X
col

ke;x; ð8Þ

where the summation is taken over the column, that is,

over the results of run 1–8.

(2) Compute the deviation from the column average

for ke;x of each run

Dke;x ¼ ke;x � ke;x: ð9Þ

(3) The effect of A on ke;x is computed as
where the denominator on the right-hand side is a factor

introduced to account for the data population involved in

the computation. Since it is cancelled out in later com-

putations, the detailed account about this factor is saved.

The effect of B on heat transfer performance, SB is com-

puted using the average ke;x from runs 1, 2, 5, 6 and that

from runs 3, 4, 7, 8; the effect of A1, SA1
using the average

ke;x from runs 1, 2, 7, 8 and that from 3, 4, 5, 6; and so on.

(4) Contribution from A to ke;x is computed as

q ¼ S =ðS þ S þ S þ S þ S þ S þ S Þ: ð11Þ
k1=k0 ¼ 2

ke;y ke;x ke;y

1.864 1.267 1.233

1.776 1.268 1.231

1.736 1.268 1.231

1.834 1.272 1.232

1.805 1.267 1.233

1.812 1.269 1.233

1.737 1.272 1.230

1.752 1.262 1.227
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Contributions from the remaining parameters are com-

puted similarly.

A summary of the contributions is given in Table 5.

The contribution of a parameter depends on the primary

direction of heat flow and k1=k0 Interpretation about the

behavior of parameter contributions is not attempted

here for the sake of brevity. The point is that we identify

a few influential parameters from this table. To illustrate
Table 5

Contributions from the parameters to the equivalent thermal conduc

k1=k0 ¼ 100 k

Primary heat flow in the x-direction (ke;x)
qA 0.6

qB 4.0

qA1
11.3

qA2
4.4

qA3
24.8

qB1
0.1

qB2
54.8

Primary heat flow from in the y-direction (ke;y)
qA 10.0

qB 34.4

qA1
0

qA2
0

qA3
0.2

qB1
30.4

qB2
25.0

Table 6

Evolutionary search for patterns producing higher equivalent therm

k1=k0 ¼ 100

Fixed

A at level 1: X1X3X2X4

B at level 2: Y2 Y1
A1 at level 2: x2 x1 x2
A2 at level 2: x2 x0 x2 x1
B1 at level 1: y1 y2 y2 y3 y0

Run no. A3ðX3Þ B

First generation

E-1 x0 x3 x3 x4 y
E-2 x0 x4 x3 x3 y
E-3 x4 x3 x0 x3 y
E-4 x3 x3 x0 x4 y

Second generation

E-5 x0 x3 x3 x4 y
E-6 x0 x3 x3 x4 y
E-7 x0 x4 x3 x3 y
E-8 x0 x3 x3 x4 y

Third generation

E-9 x0 x4 x3 x3 y
E-10 x3 x3 x0 x4 y
E-11 x3 x3 x4 x0 y
E-12 x3 x4 x3 x0 y
the step of improving the heat transfer performance we

take up the case of ke;x and k1=k0 ¼ 100 as an example.

From Table 5, we take A3 and B2 as variables because

of their large contributions. Other parameters are fixed

as shown in Table 6. The template population is now

drastically reduced, but it is still 720 (12 permutations in

X3 and 60 permutations in Y2). We first pick up four sets

of A3- and B2-states at random as shown in the first
tivity (in percentage)

1=k0 ¼ 10 k1=k0 ¼ 2

2.1 4.4

8.0 1.6

7.7 8.6

2.8 1.6

26.7 29.8

1.2 14.3

51.4 39.7

8.7 6.8

31.6 42.4

2.7 27.1

0.8 6.8

0.1 1.7

30.4 0

25.6 15.3

al conductivity; focus on the effects of A3 and B2 on ke;x for

2ðY2Þ ke;x

0 y3 y4 y4 y5 3.490

0 y5 y4 y3 y4 3.422

5 y4 y3 y4 y0 3.288

4 y4 y0 y5 y3 3.004

0 y3 y4 y4 y5 3.490

0 y5 y4 y3 y4 3.400

0 y3 y4 y4 y5 3.578

0 y3 y5 y4 y4 3.207

0 y3 y4 y4 y5 3.578

0 y3 y4 y4 y5 3.495

0 y3 y4 y4 y5 3.577

0 y3 y4 y4 y5 3.488
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generation, E-1 to E-4, in Table 6. By numerical analysis

we find the values of ke;x, that of E-1 being the highest

and that of E-2 the second highest. Following the sur-

vival-of-the-fittest rule of GA we preserve the X3 feature

of E1 in three templates (E-5, E-6, E-8) of the second

generation, and that of E-2 in E-7. E-5 is a copy of E-1.

The arrangement in Y2 of E-6 is brought over from E-2.

Since X3 of E-6 is X3 of E-1, this is tantamount to a

blockwise swapping on E-1 and E-2, X3 of E-1 to that of

E-2, to produce E-6. Also, blockwise swapping, X3 of E-

2 to that of E-1 while preserving Y2 of E-1, produces E-7.
In Y2 of E-8, the head (y0) and the tail (y5) are preserved
from Y2 of E-2, but the internal arrangement of E-2

ðy5 y4 y3Þ is subjected to cyclic cross-over [16]. We hit

upon the highest ke;x in E-7, so E-7 is copied in E-9 of the

third generation. In the third generation, Y2 is held in-

tact, and only the elements of X3 are shuffled. Examin-

ation of the ke;x values from the first to the third

generation indicates that further search may produce

only marginal improvement in ke;x.
x

y

Fig. 5. Patterns sampled from the variant set and temperature distri

edge of the slab is 1, that at the right edge is 0, and the upper and lo
Fig. 5 shows samples of patterns and computed

temperature distributions. To aid the visual examination

the grids are shown in both the pattern diagrams (on the

left) and the temperature diagrams (on the right), with

the grid density in the latter doubled from that of the

former. The pattern at the top is that of Fig. 2 (note

the rotation of the drawing by 90� as indicated by the

symbols of the coordinate axes), that in the middle is a

pattern of E-1, and that at the bottom is a pattern of E-9

(E-7). The temperature is normalized by DT , hence,

T ¼ 1 on the left boundary and 0 on the right. The

temperature distribution is shown in incremental nor-

malized scales. The scales are listed on the right of each

temperature distribution diagram. The ranges from the

top to the bottom in the list correspond to the bands

from the left to the right in the temperature distribution

diagram, the highest range 0.9–1 corresponding to the

leftmost band, and the lowest range 0–0.1 to the right-

most band. The isotherms imply complex heat flow

patterns resulted from the locations of the vertical and
ke,x = 3.142

ke,x = 3.490

ke,x = 3.578

0.9–1
0.8–0.9
0.7–0.8
0.6–0.7
0.5–0.6
0.4–0.5
0.3–0.4
0.2–0.3
0.1–0.2
0–0.1

0.9–1
0.8–0.9
0.7–0.8
0.6–0.7
0.5–0.6
0.4–0.5
0.3–0.4
0.2–0.3
0.1–0.2
0–0.1

091
0809
0708
0607
0506
0405
0304
0203
0102
001

091
0809
0708
0607
0506
0405
0304
0203
0102
001

0.9–1
0.8–0.9
0.7–0.8
0.6–0.7
0.5–0.6
0.4–0.5
0.3–0.4
0.2–0.3
0.1–0.2
0–0.1

butions (k1=k0 ¼ 100). The temperature (normalized) at the left

wer edges are adiabatic.
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horizontal conductive strips. However, some generic

observations can be drawn from these examples. Ob-

serving from the top to the bottom temperature dia-

grams we find the isotherms coming more aligned to the

y-axis. Skewed isotherms (sloped against the y-axis)
mean longer heat flow paths from the left edge to the

right, of course, in certain average sense. From the top

diagram to the middle, the equivalent thermal conduc-

tivity is raised by 11%. Improvements of the isotherm

pattern from the middle diagram to the bottom seem

small, actually bringing a 2.5% upgrading to the equiv-

alent thermal conductivity.
6. Conclusions

Knowledge about the sensitivity of heat transfer

performance to the constituent arrangement in a com-

posite system leads us to a design of better internal or-

ganization of the system. However, where the

constituent arrangement in the system space has a large

degree of freedom, we have to resolve two issues. One is

the complexity of heat flow paths resulted from geo-

metrically complex arrangements of constituents, and

the other is the requirement on computational resources

that grows prohibitively large due to a vast number of

possible constituent placements. The present paper

proposed a methodology whereby these issues are ad-

dressed in a systematic manner. Its key ingredients and

the conclusions are enumerated as follows.

(1) The constituent placement is captured as a two-

dimensional pattern of solid cells representing material

of high thermal conductivity embedded in a matrix of

low thermal conductivity. On a pattern assumed as a

starter, the SVD analysis is performed, and from the

sets of left-singular vectors and right-singular vectors

the building block elements of the pattern are identi-

fied.

(2) By shuffling the building block elements a set of

variants from the starter pattern are created. Heat

transfer analysis is performed on sample patterns picked

up from the ensemble of variants. In the first-stage

screening by the Taguchi method, the arrangements of

groups of building block elements, and the arrangements

of building block elements in the groups are treated as

levels taken by the geometric parameters. Influential

blocks of elements are identified from the heat transfer

solutions on the sampled variants.

(3) A basic version of GAs is applied to the analysis

on a body of constituent patterns that have already been

narrowed down by the first stage screening. The whole

steps from the SVD analysis to the identification of

better constituent arrangements are demonstrated on the

problem of heat conduction through composite slabs.

(4) The SVD analysis provides a means to change the

constituent placement in a manner adaptable to the ex-
isting search algorithms for better or optimum place-

ments.

(5) The SVD analysis also leads to the development

of a systematic way of modeling complex systems, ne-

glecting unimportant details, thereby, assuming simpler

models than actual systems. Discussion of this benefit

and applications of the present methodology to other

systems such as electronic equipment is left to future

reports.
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Appendix A

This appendix provides supplementary information

on the optimization methods employed in the present

study and the idea behind the example problem.

The Taguchi method was originated from statistical

quality control of industrial products. It is a tool to es-

timate the sensitivity of product quality to multiple pa-

rameters involved in the manufacturing process. In

recent years its application has been extended beyond

the quality control field to other engineering and re-

search practices. See, for example, [17,18]. The primary

function of the Taguchi method is the screening of rel-

evant parameters rather than pinpoint optimization.

Contributions of the parameters to the end result (sen-

sitivity measures) are computed, and those having low

percentage points are discarded from the list of control

parameters. A key element of the Taguchi method is a

table of parameter levels that is designed to reduce the

requirement for experimental or computational runs.

This and other elements of the Taguchi method are de-

scribed in Section 5.

Creation of a parameter-levels table in the Taguchi

method involves certain ad hoc exercises. The �orthog-
onality condition� (the end of the second paragraph of

Section 5) that needs to be materialized in the table is a

constraint on the coverage of parametric domain. The

most elementary form is composed of seven parameters

and two levels (Table 3 of Section 5). As the number of

parameters and the levels are increased, the table ex-

pands and materialization of the orthogonality condi-

tion requires tedious checking. Also, one cannot choose

the number of parameters and that of levels indepen-

dently. They are interlocked under the orthogonality

condition. (Presently, 11 parameters with two levels plus
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12 parameters with three levels constitute a largest table,

and a commercial code is available for orthogonality

checking.) So, in cases where a large number of pa-

rameters are involved, one needs to pick some parame-

ters for the sensitivity study and leave the rest fixed.

Setting the parameter values on �levels�, typically on two

levels, is also an exercise of ad hoc nature. Where ex-

treme values in a parametric range are obvious, they are

natural choices. In general, the level setting is an art-

work largely based on one�s insight and experience. The

level setting affects the conclusion; where they are set by

a too narrow separation, the parameter effect tends to be

underestimated. Naturally, there remains a sense of

uncertainty as to the relative importance of untested

(fixed) parameters and the correctness of level setting. In

theory, one can reduce the uncertainties by iterative se-

lection of the parameters and re-setting of the levels. In

so doing, one can also narrow down a range of optimum

parameter values. However, the entire process is hard to

be automated, so, the Taguchi method yields to the GA

as a tool for pinpoint optimization.
The GA has been developed by now to be a robust

tool of optimization. Use of the GA from the outset,

skipping the screening by the Taguchi method, is in

principle possible. One may even construct a process

of multi-stage search using the GA alone, starting with

global screening and ending with pinpointing an op-

timum parametric combination. The choice of the

optimization process, either serial applications of the

Taguchi method and the GA or the GA alone, is es-

sentially a matter of one�s preference. In the present

study, the Taguchi method is incorporated in the

search process favoring its capability to produce

quantitative information regarding the parameters�
relative importance. Such information does not nec-

essarily clearly emerge from a result of GA search

alone.
Both the Taguchi method and the GA can deal with

parameters that are hard to be described in conventional

quantitative terms. Component placement pattern

studied in the present paper is one of such parameters. A

parameter needs to be represented by a string of symbols

or numerals in the Taguchi method or the GA. In the

present study, symbol strings are created from the SVD

analysis of component placement patterns. Of course,

the SVD analysis is not a sole means of string creation.

See [10–12] for other examples of string creation. Fur-

ther discussions on the issue of parameter representation

are saved for future publications currently in prepara-

tion.
Finally, a note is made about grouping and permu-

tations of the singular vector elements (or cells after

pattern construction by Eq. (1)) in the example problem

of Section 5. By grouping one defines a length scale of

shuffling, that is the scale over which the grouped cells

move around in permutation. Where the groups are
packed in a domain, the shuffling length scale is equal to

a representative group size. Grouping defined in Table 2

defines a shuffling length of about a quarter (half) of the

longer (shorter) side of the domain rectangle. Permuta-

tion of elements in the groups is a shuffling in finer

length scales. Thus, the grouping is a step in the multi-

stage search on the shuffling length scale. In the example

problem, the block elements of singular vectors are

grouped such that, when a pattern is constructed using

Eq. (1), the cells are nearly evenly assigned to six block

zones in all group permutations. The group size is a

strategic factor that affects the search process. Where

only a few groups are defined in the domain, all per-

mutations of the groups can be studied without resorting

to samplings of the Taguchi method or the GA. On the

other hand, a reduced-size group allows the study of all

permutations of elements in the group. In either case,

samplings are applied, to element permutations in the

group or permutations of fine and numerous groups in

the domain. The sampling leaves uncertainties as to the

effect of unvisited permutations, and iterative search to

reduce the uncertainties is generally time consuming.

There is a balance point between the cost of search and

the level of uncertainty that is to be struck by the defi-

nition of group size. For problems such as optimization

of components placement in electronic equipment,

samplings on both group permutations and elements

permutations in the groups is a practical option. In the

example problem of Section 5 the number of groups is

set at a level that allows the study of all group permu-

tations in a reasonable time frame. However, full cov-

erage of permutations is sidestepped to simulate actual

design studies. A guide for sampling and permutations

in the example problem, that produced the patterns of

Fig. 5, is that the overall geometrical feature does not

deviate markedly from those found in the cross-section

of printed circuit boards.
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